Thursday 28 November

10.00 - Plenary Session

10:00:00
Fatigue Design 2013 (Opening of the Conference), Mansour Afzali (Cetim, France)

10:00:15
Welcome to Fatigue Design 2013, by the conference chairmen, T. Samuel (SF2M), S. Courtin (Areva), A. Koster (Pulse in Industry), J. Choné (Cetim), É. Charkaluk (Cetim), S. Fouvry (Cetim), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

10:00:30
Introduction of the conference logo (Cetim offers a complete logo online), J. Robert (SF2M, Europe), S. Courtin (Areva), A. Koster (Pulse in Industry), J. Choné (Cetim), É. Charkaluk (Cetim), S. Fouvry (Cetim), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

Room 6

5th edition of the International conference on fatigue design
27 and 28 November 2013 - Senlis, France

The Fifth Fatigue Design 2013 conference aims to present the most innovative approaches and scientific progress in design methodologies, tools, and equipment's life extension, focusing on industrial applications.

100 participants from the mechanical engineering, transport, energy, building and public works industries are expected.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:

- a poster exhibition (Candidature opened until juin 20th)
- a technological showcase featuring exhibits by service providers and technology suppliers.

Access - 52 avenue Félix-Louat, 60889 Senlis, France

- Travelling by car: motorway A1 exit n° 6 (Senlis)
- To come from the International Airport Roissy Charles de Gaulle (CDG) or by the TGV station (Roissy CDG) (Shuttle “Cetim Fatigue Design”)

- To come from Orly Airport, first join the Roissy CDG by an inter airport shuttle.

Accommodation

All useful informations are on www.fatiguedesign.org. Indicated shuttle services will be organized between the hotels and the conference site.

Organisational committee:
S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

M. Bacher-Hoechst, T. Svensson (SP Technical Research Institute of Sweden)
M. Kaminski (Onera, France)

Fatiguedesign@cetim.fr +33-03-44-67-36-82

www.fatiguedesign.org

Contact

Roadmap of the Conference

Fatigue Design 2013

Room 6

Fatigue analysis issues and strategies for electronic assemblies for high-reliability and harsh environment

Assessment of existing steel structures - Recommendations for estimation of the remaining fatigue life,

Laplace moving average model for multi-axial responses in fatigue analysis of a cultivator

Assessment of very high cycle fatigue (VHCF) effects in practical applications,

Reliable fatigue design, by rigid rules, by magic or by enlightened engineering,

Fatigue Damage Modeling of Composite Structures, FD13-K04

Wednesday 27 November

10:00 - Opening ceremony

Philippe Choderlos de Laclos, General Manager, Cetim, France
Mansour Afzali, Scientific Advisor, Cetim, France

Partnerships

Crédit photos : ©Citroën Communication, Laurent Nivalle, Charles Antoine d’Autichamp, Alan Morel – Fotolia : ©barlest - ©fderib - ©vlaru

Social event: New in 2013

 Gala evening on the “La Friche” - piedestrianisation of an attraction and dinner at the restaurant “Le Faxi” at the heart of the park.

Contact

Fatiguedesign@brsnt.fr
Tel: +33 (0)3 44 67 36 82

Fatiguedesign.org
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Monday</td>
<td>1. Introduction to Fatigue</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>09.30</td>
<td>Monday</td>
<td>2. Introduction to Fatigue</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>11.00</td>
<td>Monday</td>
<td>4. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>12.00</td>
<td>Monday</td>
<td>5. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>14.00</td>
<td>Monday</td>
<td>7. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>15.00</td>
<td>Monday</td>
<td>8. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>17.00</td>
<td>Monday</td>
<td>10. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>18.00</td>
<td>Monday</td>
<td>11. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>19.00</td>
<td>Monday</td>
<td>12. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>20.00</td>
<td>Monday</td>
<td>13. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>22.00</td>
<td>Monday</td>
<td>15. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>23.00</td>
<td>Monday</td>
<td>16. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>09.00</td>
<td>Tuesday</td>
<td>17. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>10.00</td>
<td>Tuesday</td>
<td>18. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>11.00</td>
<td>Tuesday</td>
<td>19. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>12.00</td>
<td>Tuesday</td>
<td>20. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>13.00</td>
<td>Tuesday</td>
<td>21. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>14.00</td>
<td>Tuesday</td>
<td>22. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>15.00</td>
<td>Tuesday</td>
<td>23. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>16.00</td>
<td>Tuesday</td>
<td>24. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>17.00</td>
<td>Tuesday</td>
<td>25. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>18.00</td>
<td>Tuesday</td>
<td>26. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>19.00</td>
<td>Tuesday</td>
<td>27. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>20.00</td>
<td>Tuesday</td>
<td>28. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>21.00</td>
<td>Tuesday</td>
<td>29. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>22.00</td>
<td>Tuesday</td>
<td>30. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>23.00</td>
<td>Tuesday</td>
<td>31. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>09.00</td>
<td>Wednesday</td>
<td>32. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>10.00</td>
<td>Wednesday</td>
<td>33. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>11.00</td>
<td>Wednesday</td>
<td>34. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>12.00</td>
<td>Wednesday</td>
<td>35. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>13.00</td>
<td>Wednesday</td>
<td>36. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>14.00</td>
<td>Wednesday</td>
<td>37. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>15.00</td>
<td>Wednesday</td>
<td>38. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>16.00</td>
<td>Wednesday</td>
<td>39. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>17.00</td>
<td>Wednesday</td>
<td>40. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>18.00</td>
<td>Wednesday</td>
<td>41. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>19.00</td>
<td>Wednesday</td>
<td>42. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>20.00</td>
<td>Wednesday</td>
<td>43. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>21.00</td>
<td>Wednesday</td>
<td>44. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>22.00</td>
<td>Wednesday</td>
<td>45. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>23.00</td>
<td>Wednesday</td>
<td>46. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>09.00</td>
<td>Thursday</td>
<td>47. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>10.00</td>
<td>Thursday</td>
<td>48. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>11.00</td>
<td>Thursday</td>
<td>49. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>12.00</td>
<td>Thursday</td>
<td>50. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>13.00</td>
<td>Thursday</td>
<td>51. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>14.00</td>
<td>Thursday</td>
<td>52. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>15.00</td>
<td>Thursday</td>
<td>53. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>16.00</td>
<td>Thursday</td>
<td>54. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>17.00</td>
<td>Thursday</td>
<td>55. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>18.00</td>
<td>Thursday</td>
<td>56. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>19.00</td>
<td>Thursday</td>
<td>57. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>20.00</td>
<td>Thursday</td>
<td>58. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>21.00</td>
<td>Thursday</td>
<td>59. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>22.00</td>
<td>Thursday</td>
<td>60. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
<tr>
<td>23.00</td>
<td>Thursday</td>
<td>61. Fatigue crack propagation</td>
<td>Langille, J., Stobart, S., Pearson, I.</td>
</tr>
</tbody>
</table>
Wednesday 27 November

<table>
<thead>
<tr>
<th>Room</th>
<th>Session 1</th>
<th>Time</th>
<th>Session 2</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 8</td>
<td>16.30 - Coffee Break</td>
<td>16.45</td>
<td>Room 8</td>
<td>16.30 - Cold Fatigue and Damage</td>
</tr>
<tr>
<td>Room 7</td>
<td>16.30 - Tensile Fatigue Behaviour</td>
<td>16.45</td>
<td>Room 7</td>
<td>16.30 - Fatigue Crack Propagation Assessment</td>
</tr>
<tr>
<td>Room 6</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
<td>16.45</td>
<td>Room 6</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
</tr>
<tr>
<td>Room 5</td>
<td>16.30 - Tensile Fatigue Behaviour</td>
<td>16.45</td>
<td>Room 5</td>
<td>16.30 - Fatigue Crack Propagation Assessment</td>
</tr>
<tr>
<td>Room 4</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
<td>16.45</td>
<td>Room 4</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
</tr>
</tbody>
</table>

Thursday 28 November

<table>
<thead>
<tr>
<th>Room</th>
<th>Session 1</th>
<th>Time</th>
<th>Session 2</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 8</td>
<td>16.30 - Mechanical Behaviour in Contact Fatigue</td>
<td>16.45</td>
<td>Room 8</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
</tr>
<tr>
<td>Room 7</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
<td>16.45</td>
<td>Room 7</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
</tr>
<tr>
<td>Room 6</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
<td>16.45</td>
<td>Room 6</td>
<td>16.30 - Mechanical Behaviour in Contact Fatigue</td>
</tr>
<tr>
<td>Room 5</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
<td>16.45</td>
<td>Room 5</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
</tr>
<tr>
<td>Room 4</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
<td>16.45</td>
<td>Room 4</td>
<td>16.30 - Mechanical Behaviour in Contact Fatigue</td>
</tr>
</tbody>
</table>

Friday 29 November

<table>
<thead>
<tr>
<th>Room</th>
<th>Session 1</th>
<th>Time</th>
<th>Session 2</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 8</td>
<td>16.30 - Mechanical Behaviour in Contact Fatigue</td>
<td>16.45</td>
<td>Room 8</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
</tr>
<tr>
<td>Room 7</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
<td>16.45</td>
<td>Room 7</td>
<td>16.30 - Fatigue Crack Propagation and Assessment</td>
</tr>
<tr>
<td>Room 6</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
<td>16.45</td>
<td>Room 6</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
</tr>
<tr>
<td>Room 5</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
<td>16.45</td>
<td>Room 5</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
</tr>
<tr>
<td>Room 4</td>
<td>16.30 - Environmental Effect and Fatigue Design</td>
<td>16.45</td>
<td>Room 4</td>
<td>16.30 - Probabilistic Aspects in Fatigue Design</td>
</tr>
</tbody>
</table>
16.00 - Coffee break

16.10 - Mechanically-loaded offshore structures

16.20 - Environmental effects on fatigue design

16.25 - Fatigue damage evolution

16.30 - Coffee break

16.40 - Day 7 overview

16.45 - Post-conference dinner

17.00 - Coffee break

17.10 - Condition monitoring

17.15 - Fatigue damage assessment in BWR fuel沸腾管, J. Havel, A. Czarnecki, J.安全管理 (Envirotonek)

17.20 - Fatigue damage mechanisms

17.25 - Coffee break

17.30 - Fatigue damage metrics

17.35 - Fatigue damage characterisation

17.40 - Fatigue Damage in High Strength and High Modulus Steel Bars, C. Wang, J. Wang, C. Lu, D. Li (Shanghai Jiao Tong University)

17.45 - Fatigue damage in structural steel, G. Tillich, A. van der Heijden, R. van der Veen, J. van der Wal (TNO-CTICM, Eindhoven University of Technology)

17.50 - Fatigue damage in steel structures, M. Lemos, R. Díaz, F. Ochoa, J. Sanz (University of Zaragoza)

18.00 - Coffee break

18.10 - Fatigue prognosis

18.15 - Fatigue prediction

18.20 - Coffee break

18.25 - Fatigue assessment

18.30 - Fatigue damage analysis

18.35 - Fatigue damage development

18.40 - Fatigue damage initiation

18.45 - Coffee break

18.50 - Fatigue damage evolution

18.55 - Fatigue damage assessment

19.00 - Coffee break

19.05 - Fatigue damage mechanism

19.10 - Fatigue damage classification

19.15 - Fatigue damage prediction

19.20 - Coffee break

19.25 - Fatigue damage modelling

19.30 - Fatigue damage characterisation

19.35 - Fatigue damage accumulation

19.40 - Coffee break

19.45 - Fatigue damage identification

19.50 - Fatigue damage analysis

19.55 - Fatigue damage assessment

20.00 - Coffee break

20.05 - Fatigue damage prediction

20.10 - Fatigue damage mechanism

20.15 - Fatigue damage classification

20.20 - Coffee break

20.25 - Fatigue damage evolution

20.30 - Fatigue damage assessment

20.35 - Fatigue damage initiation

20.40 - Coffee break

20.45 - Fatigue damage monitoring

20.50 - Fatigue damage evaluation

20.55 - Fatigue damage analysis

21.00 - Coffee break

21.05 - Fatigue damage detection

21.10 - Fatigue damage characterisation

21.15 - Fatigue damage accumulation

21.20 - Coffee break

21.25 - Fatigue damage mechanism

21.30 - Fatigue damage classification

21.35 - Fatigue damage prediction

21.40 - Coffee break

21.45 - Fatigue damage initiation

21.50 - Fatigue damage assessment

21.55 - Coffee break

22.00 - Fatigue damage evolution

22.05 - Fatigue damage evolution

22.10 - Fatigue damage evolution

22.15 - Fatigue damage evolution

22.20 - Coffee break
Thursday 28 November
Room E

16.40 - Plenary Session
FD13-K04 Reliable fatigue design, by rigid rules, by magic or by enlightened engineering, S. Sonner (SF2M), J. Choné (École Centrale de Lyon), J. Bernard Vogt (SF2M), S. Fouvry (Areva), É. Charkaluk (École Centrale de Lille), V. Aubin, (Total), M. Lemaire (Japan), A. Koster (École des Mines de Paris), H. Maitournam (France), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

FD13-K06 Assessment of very high cycle fatigue (VHCF) effects in practical applications, M. Bauer-Henschel, S. J. Maddox (United Kingdom), T. Lassen (France), M. Lemaire (Japan), K. Yamada (Norway), M. Prager (Germany), A. Nussbaumer (Switzerland), H. Maitournam (France), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

16.30 - Plenary Session

J. Bernard Vogt (SF2M), J. Choné (École Centrale de Lyon), S. Fouvry, A. Koster (École des Mines de Paris), M. Prager (Germany), A. Nussbaumer (Switzerland), H. Maitournam (France), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

Access
- 52 avenue Félix-Louat, 60300 Senlis, France.
- Traveling to car: motorway A1 exit n° 8 (Senlis).
- To come from the International Airport Roissy Charles de Gaulle (CDG) or by the TGV train (RER C) – Shuttle “Cetim: Fatigue Design” – Taxi: 15-20 minutes, 40-50 euros.
- To come from Orly Airport, first join the Roissy CDG Airport by an inter airport shuttle.

Accommodation
All useful informations are on www.fatiguedesign.org. Dedicated shuttle services will be organised between the hotels and the conference site.

Organisational committee:
M. Alfattih (Cetim), L. Sellier-Castex (Cetim), L. Jaffres (Cetim), M. Robert-Vincent (SOF), M. Lucic (CETIM), A. Karypis (University of Patras, Greece), S. Courdin (ENSCL), J. Samuelsson (Sweden), A. Magnée (France), M. Risbet-Voitot (UTC), M. Lukic (Zagreb, Croatia), H. Maitournam (France), S. Issler (Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Germany)

Contact
Fatiguedesign@cetim.fr
Tel: +33 (0)3 44 67 36 82

Social event: New in 2013 Gala evening at the “Parc Astérix”: visualization of an attraction and dinner at the restaurant “Le Cirque” at the heart of the park.

The Fifth Fatigue Design 2013 conference aims to present the most innovative concepts and scientific progress in design methodologies, tools, and equipment’s life extension, focusing on industrial applications.

300 participants from the mechanical engineering, transport, energy, building and public works industries are expected.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:
- a poster exhibition (Candidature opened until juin 20)
- a technological showcase featuring exhibits by service providers and technology suppliers.

The Fifth Fatigue Design 2013 conference aims to present the most innovative concepts and scientific progress in design methodologies, tools, and equipment’s life extension, focusing on industrial applications.

300 participants from the mechanical engineering, transport, energy, building and public works industries are expected.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:
- a poster exhibition (Candidature opened until juin 20)
- a technological showcase featuring exhibits by service providers and technology suppliers.

The Fifth Fatigue Design 2013 conference aims to present the most innovative concepts and scientific progress in design methodologies, tools, and equipment’s life extension, focusing on industrial applications.

300 participants from the mechanical engineering, transport, energy, building and public works industries are expected.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:
- a poster exhibition (Candidature opened until juin 20)
- a technological showcase featuring exhibits by service providers and technology suppliers.
The Fifth Fatigue Design 2013 conference aims to present the most innovative approaches and scientific progress in design methodologies, tools, and equipment’s life extension, focusing on industrial applications.

350 participants from the mechanical engineering, transport, energy, building and equipment’s life extension, focusing on industrial applications.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:
- a poster exhibition (Candidateure opened until juin 20th);
- a technological showcase featuring exhibits by service providers and technology suppliers.

Contact
Fatiguedesign@pb.com
Tel: +33 (0)1 48 67 36 82
www.fatiguedesign.org

Wednesday 27 November

• Opening statement

9.00 - Plenary Session

Opening speech and presentation - overview of the conference

Organisation committee:
M. Bacher-Hoechst, T. Svensson (SP Technical Fatigue Damage Modeling of Composite Structures, M. Bacher-Hoechst (Germany), M. Bacher-Hoechst, T. Svensson (SP Technical

Accommodation
All useful informations are on www.fatiguedesign.org. Dedicated shuttle services will be organised between the hotels and the conference site.

Access
- 52 avenue Félix-Louat, 60300 Senlis, France.
- To come from the International Airport Roissy Charles de Gaulle (CDG) or by the TGV station "Roissy-Charles de Gaulle". Shuttles “Cetim - Fatigue Design”
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
- To come from the international airport Roissy Charles de Gaulle (CDG) and by the motorway A1 n°8
Thursday 28 November

Room 6

16.30 - Plenary Session

FD13-K06
Assessment of very high cycle fatigue (VHCF) effects in practical applications,
Reliable fatigue design, by rigid rules, by magic or by enlightened engineering,
FD13-K05
FD13-K04

16.30 - Plenary Session

J. Bernard Vogt
(SF2M),
J. Choné
(Areva),
S. Courtin
(École Centrale de Lyon),
S. Walbridge
(UTD),
M. Sonsino
(USA),
J. Samuelsson
(AB consulting),
A. Galtier
(Ascometal CREAS),
A. Bignonnet
(Enscl),
Les organisateurs se réservent le droit de modifier le présent programme en cas de nécessité.

Access - 12 avenue Félix-Louat, 60000 Senlis, France.
To come from the International Airport Roissy Charles de Gaulle (CDG) or by the TGV train (Roissy-Charles de Gaulle) - Shuttle "Citroën : Fatigue Design" - Two, 15 minutes, 40/50 euros.
To come from Orly Airport, first join the Roissy CDG Airport by an inter airport shuttle.

Accommodation

All useful informations are on www.fatiguedesign.org. Indicated shuttle services will be organised between the hotels and the conference site.

Contact
Fatiguedesign@cetim.fr
Tel: +33 (0) 3 44 87 36 82
www.fatiguedesign.org

The Fifth Fatigue Design 2013 conference aims to present the most innovative approaches and scientific progress in design methodologies, tools, and equipment’s life extension, focusing on industrial applications.

300 participants from the mechanical engineering, transport, energy, building and public works industries are expected.

To facilitate exchanges among participants, in addition to the two days of lectures, there will be:
- a poster exhibition (Candidateure opened until juin 20th),
- a technological showcase featuring exhibits by service providers and technology suppliers.

Room 6